

THE SELECTIVE PI3K5 INHIBITOR ROGINOLISIB SYNERGIZES WITH RUXOLITINIB AGAINST PROGENITOR CELLS FROM NAÏVE AND JAKI-REFRACTORY/RESISTANT PATIENTS WITH MYELOFIBROSIS

M. Balliu¹, V. Boldrini¹, C. Maccari¹, D. Colazzo¹, I. Sestini¹, G. Di Conza², M. Lahn², P. Guglielmelli¹, A.M. Vannucchi¹

PCR

- ¹ CRIMM, Hematology Unit, AOU Careggi, University of Florence, Florence, Italy,
- ² R&D Department, iOnctura SA, Geneva, Switzerland

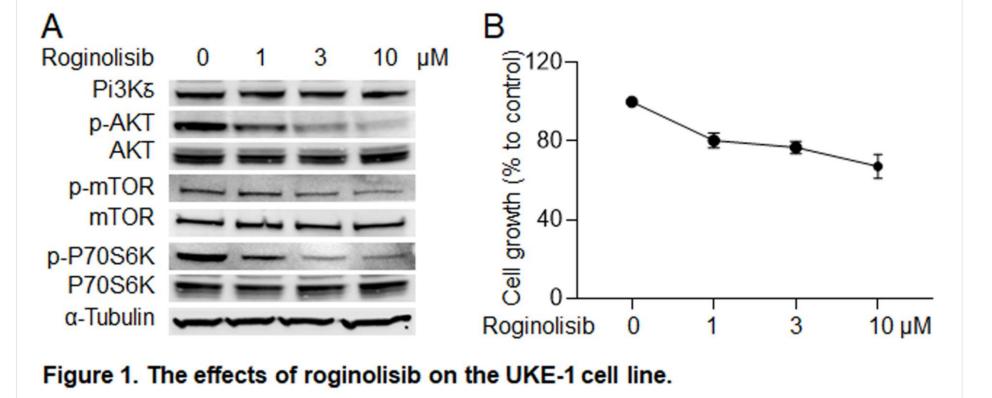
INTRODUCTION

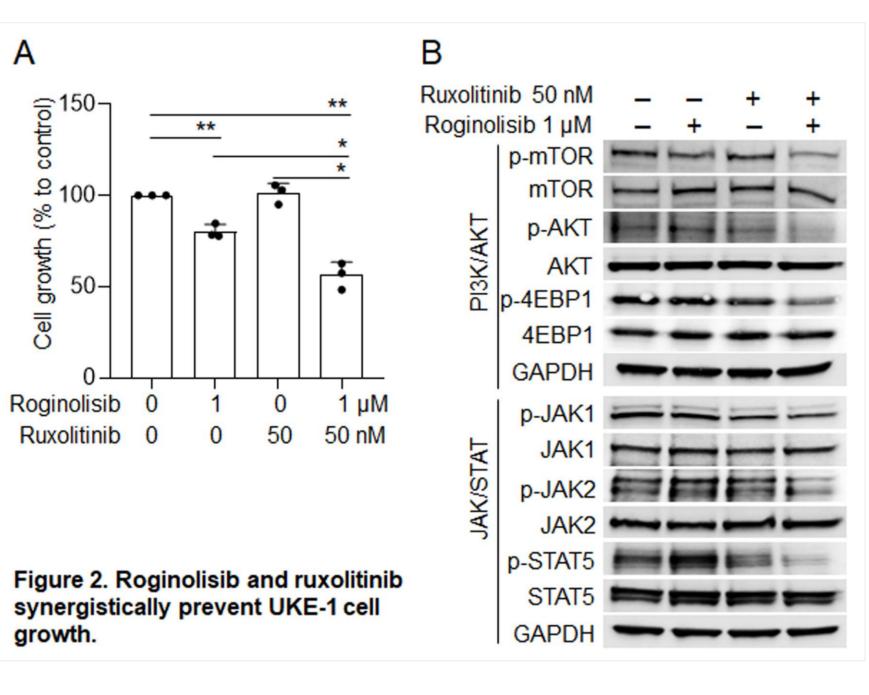
- driver mutation-associated dysregulation of the JAK/STAT pathway, treatment of myelofibrosis (MF) has seen a fundamental shift with the introduction of JAK inhibitors.
- Beyond JAK/STAT, other key signaling pathways, such as the PI3K/AKT/mTOR, implicated in regulating cell proliferation, growth, survival, metabolism in MF.
- Addressing the toxicity concerns of earlier PI3K inhibitors, isoform-selective PI3K inhibitors are now being developed (1,2).

AIM

This study aims to evaluate the efficacy of the first-in-class non-ATP-competitive PI3Kδ inhibitor, roginolisib (Rogi; IOA-244), as a single agent and in combination with Ruxolitinib (Ruxo), in JAK2V617F mutated cell lines and in-vitro models of MF primary progenitor cells.

METHOD


We used JAK2V617F-mutated UKE-1 cell (CD34⁺, primary cells mononuclear and T-lymphocytes from MF patients.


Numerical data reported throughout this work are presented as the mean ± standard deviation (SD) of experiments carried out in triplicate.

The Student's t-test was employed to assess statistical significance, and the difference between values was considered significant at P≤0.05.

RESULTS

UKE-1 phosphorylation of AKT, mTOR, and causing decreased growth

Combination of rogi and synergistically significantly decreased singleagent (Fig. 2A; CI<1). Western blot showed dephosphorylation main AKT/mTOR and JAK/STAT components 2B) by combination

Roginolisib significantly reduced BFU-E and CFU-GM colonies (Table 1). Comparative analysis revealed that the treatment-naïve subset exhibited significantly greater sensitivity than Ruxolitinib-refractory (R/R) subset.

Roginolisib		1 μΜ	3 μΜ	10 μΜ	IC50 (μM)
BFU-E	All pts	31.9±4.1	43.9±4.7	57.5±4.5	6.18
	Naive pts	37.7±4.9	53.9±3.9	66.6±3.9	3±0.9
	R/R pts	24.6±4.7	31.4±2.7	46.2±3.8	>10
CFU-GM	All pts	41±5.1	51.2±4.5	60.8±5.1	2.8
	Naive pts	51.9±3.9	60.7±3.3	70.6±4.4	1.4±0.6
	R/R pts	27.3±3.5	39.3±4.4	48.5±5.2	>10

Table 1. Roginolisib's effects on CD34+ cell clonogenic assays from 9 MF patients (5 treatmentnaïve, 4 R/R).

Combining rogi with ruxo significantly reduced colony formation and exhibited synergism (CI<1). A comparative analysis showed that R/R patients responded similarly to the treatment-naïve group

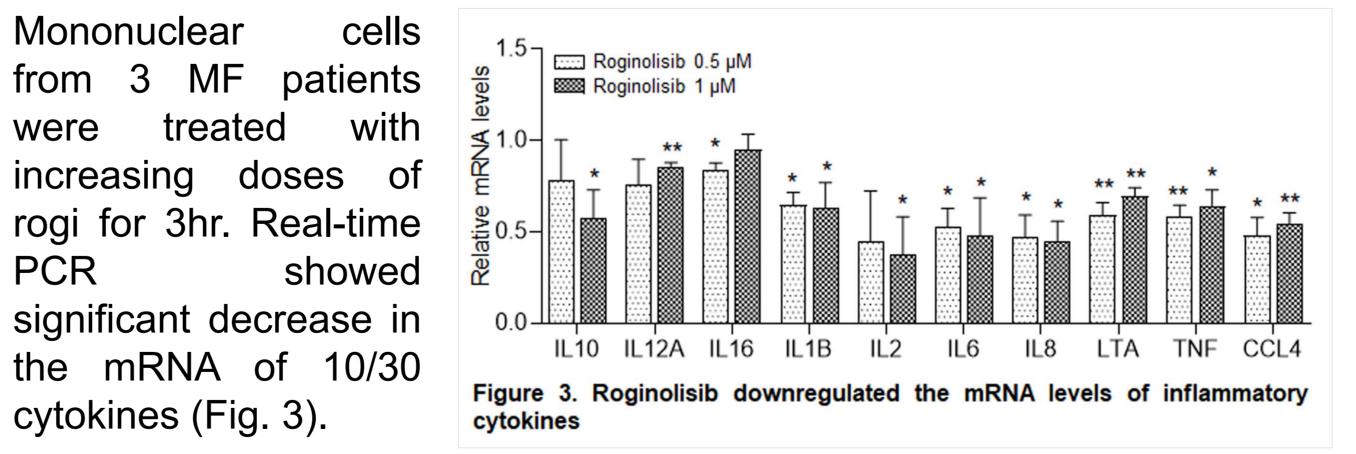

Roginolisib/Ruxolitinib		0.5 μΜ	0.05 μΜ	Combo
BFU-E	All pts	20.8±4	31.6±3.9	67.2±3.9
	Naive pts	25.4±6.1	41.5±0.9	69.7±5.9
	R/R pts	15.2±3.6	21.8±3.6	64.1±5.2
	All pts	33.3±5	29.7±4.4	69.2±4.4
CFU-GM	Naive pts	43.2±4.7	37.2±3.9	74.6±4
	R/R pts	20.9±4.5	22.3±6.8	60.4±8

Table 2. The effects of combining roginolisib with ruxolitinib on CD34+ cell clonogenic assays from 9 MF patients (5 treatment-naïve, 4 R/R).

Combining roginolisib with momelotinib significantly reduced colony formation and exhibited synergism (CI<1).

Roginolisib/ Momelotinib	0.5 μΜ	5 nM	Combo
BFU-E	11±2.1	19.4±0.9	64.2±0.6
CFU-GM	34.1±0.4	23±0.5	72.6±1.2

Table 3. The effects of combining roginolisib with momelotinib on CD34+ cell clonogenic assays from MF patients.

Splenic CD34⁺ and T cells from 5 MF pts were exposed (monoculture and CD4+/ CD8+ co-culture) to rogi doses for 4 days.

Roginolisib induced dose-dependent CD34+ cell growth inhibition (Fig. 4A) that was associated with increased apoptosis (Fig. 4B).

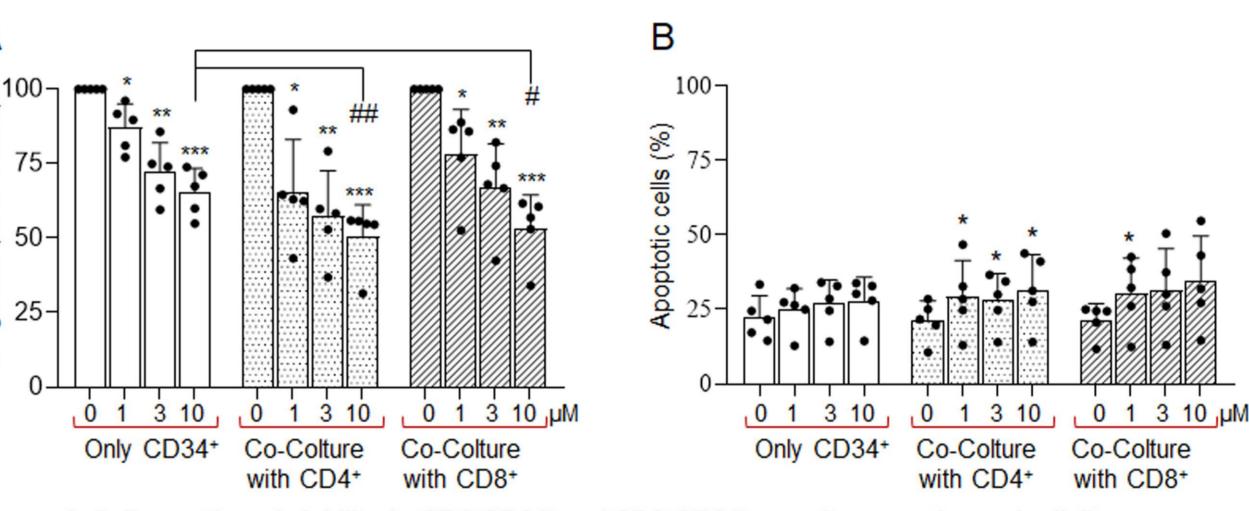
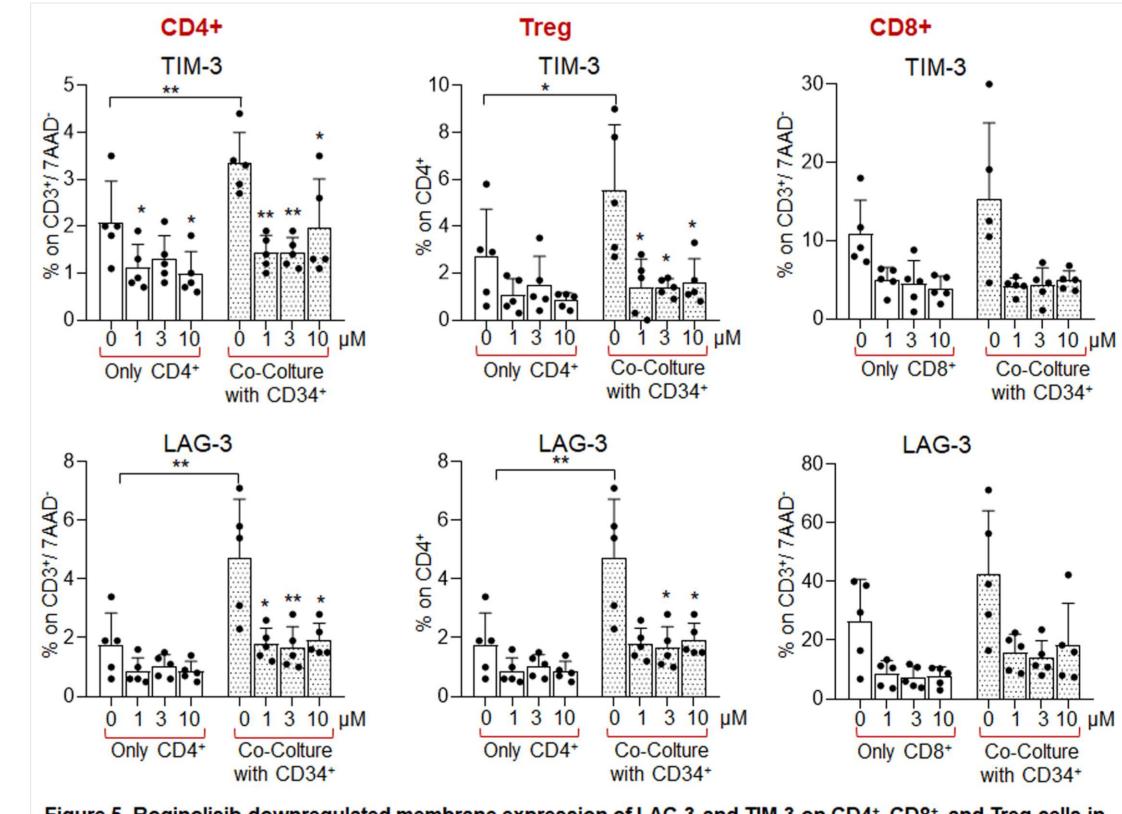



Figure 4. Cell growth and viability in CD4+CD34+ and CD8+CD34+ co-cultures under roginolisib

Flow cytometry was used to assess checkpoint marker expression on CD8+, CD4⁺ and Treg cells. Across all T cell subsets, co-culture increased membrane TIM-3 and LAG-3 expression compared to monoculture, an effect which was significantly reduced by roginolisib treatment (Fig. 5).

CONCLUSIONS

These findings support efficacy of roginolisib, a selective PI3Kδ inhibitor, in primary MF cells, especially when combined with JAK2 inhibitors, providing a rationale for the ongoing phase 1/2 HEMA-MED clinical trial (NCT06887803), currently ongoing in Italy and Spain.

REFERENCES

- . Johnson Z. et al. OA-244 is a Non-ATP-competitive, highly selective, tolerable PI3K Delta inhibitor that targets solid tumors and breaks immune tolerance. Cancer research Communication 2023; 3(4):576-591.
- 2. Siempelkamp B.D. et al. Molecular mechanism of activation of class IA phosphoinositide 3-kinases (PI3Ks) by membrane-localized Hras JBC 2017; 21;292(29):12256-12266.

ACKNOWLEDGEMENTS

Supported by iOnctura SA and AIRC 5 per Mille MYNERVA project.

CONTACT INFORMATION

manjola.balliu@unifi.it